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Summary

•Our target is the efficient, accurate and scalable solution of large-scale nonlinear
Stokes systems arising in the simulation of mantle flow with associated plate tectonics.
•Use Newton’s method for the nonlinear Stokes system and preconditioned Krylov

methods for the solution of the linearized systems.
• The discretization is based on adaptively refined meshes to resolve the strong varia-

tions in the viscosity, and a stable high-order velocity-pressure pair with discontinuous
pressure functions to guarantee local mass conservation.
• Efficient solvers are particularly important for inverse problems in mantle flow, which

require the repeated solution of large-scale nonlinear and linearized Stokes problems.

1. Mantle flow
Mantle convection is the thermal convection in the Earth’s upper ∼3000 km. It controls
the thermal and geological evolution of the Earth and drives plate motion and mountain
building. Mantle flows are driven by the hot core and radioactive decay in the mantle itself.

Model equations
Rock in the mantle moves like a viscous, incompressible
fluid on time scales of millions of years. From conser-
vation of mass and momentum, we obtain that the flow
velocity can be modeled as a nonlinear Stokes system:

−∇ ·
[
µ(T,u)(∇u +∇u>)

]
+∇p = RaTer (S1)

∇ · u = 0 (S2)

• T . . . temperature
•u . . . velocity
• p . . . pressure
• µ(T,u) . . . viscosity
•Ra ∼ 106− 109 . . . Rayleigh

number
• er . . . radial direction

The temperature and strain-rate dependent viscosity is commonly described by the follow-
ing rheology:

µ(T,u) = µ(T )µ(u) = eEa(0.5−T )
(
ε̇II(u)

)n−1
n
,

ε̇II is the second invariant of the strain rate tensor, Ea the activation energy, and n ≥ 1.

Solver challenges
� Variation of viscosity µ by up to

8 orders of magnitude.
� Highly localized features w.r.t.

Earth radius ∼6371 km: plate
thickness ∼50 km and shearing
zones at plate boundaries ∼5–
10 km.

� Desired resolution of ∼1 km
would result in O(1012) degrees
of freedom on a uniform mesh
of Earth’s mantle.

(Visualization by L. Alisic)

2. Adaptive, high-order finite element discretization

Parallel octree-based AMR using the p4est library

� Hexahedral meshes with non-conforming elements.
� Parallel adaptive mesh refinement and coarsening.
� Octree algorithms enable fast neighbor search, repartitioning, and

2 : 1 balancing.
� Scalable to at least hundreds of thousands of processors.

Finite element discretization
� We use high-order velocity-pressure pairings in (QN )3 × Pdisc

N−1 or (QN )3 ×Qdisc
N−2, which

satisfy the inf-sup conditions for conforming and non-conforming meshes.
� Algebraic constraints on element faces with hanging nodes enforce continuity of the

global velocity basis functions.
� Hexahedral elements allow for the basis functions derivatives to be calculated efficiently

using tensor products.
� Fast, matrix-free application of stiffness and mass matrices.

3. Large-scale parallel Stokes solver
Nonlinear solver: Inexact Newton-Krylov method
Given an iterate (u, p), the Newton update (ũ, p̃) for the Stokes system (S1), (S2) solves
the PDE

−∇ ·
[
µ′(T,u)(∇ũ +∇ũ>)

]
+∇p̃ = −r ,
∇ · ũ = −r .

r and r are residuals and µ′(T,u) is an anisotropic 4th-order tensor given by

µ′(T,u) = µ(T )µ(u)

(
I − n− 1

n

(∇u +∇u>)⊗ (∇u +∇u>)

ε̇II + ε

)
,

where 0 < ε� 1 is a regularization parameter and I the 4th-order identity tensor. The next
Newton iterate is (α > 0 is the step size):

(unew, pnew) = (u, p) + α(ũ, p̃) .

� Newton update is computed inexactly via Krylov subspace iterative method.
� Krylov tolerance decreases with subsequent Newton steps to guarantee superlinear

convergence.
� Line search in direction (ũ, p̃) is conducted using the weak Wolfe conditions to ensure

reduction of residuals.

Linear solver: Preconditioned Krylov method
� Krylov method: Upper triangular block preconditioned GMRES (GMRES from PETSc).
� Schur complement preconditioner that can be written as a matrix consisting of two

blocks: (1) viscous block and (2) pressure Schur complement.
� The pressure Schur complement is approximated by a spectrally equivalent lumped

mass matrix weighted with the inverse viscosity, or by a BFBT approximation.
� Algebraic multigrid (AMG) V-cycle (Trilinos ML) with SOR smoother (PETSc) approxi-

mates the viscous block.
� AMG is called with a linearized version of the stiffness matrix, i.e., the high-order dis-

cretization is sparsified using trilinear elements based on the high-order degrees of free-
dom. This results in faster matrix assembly for Trilinos ML and is more suitable for AMG.

Parallel, hybrid geometric-algebraic multigrid for the viscous block
We will replace AMG with our new hybrid geometric-algebraic multigrid solver, which has
better scalability properties compared to Trilinos ML due to its mesh-based hierarchy setup.
� GMG-AMG approach matches geomet-

ric decomposition of the domain.
� AMG is used for small problem sizes on

small process counts.
� Smoothed aggregation algebraic multi-

grid (Trilinos ML).
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Scalability results for 3D Poisson problem on spherical domain with isotropic spatially vary-
ing coefficient:
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Abstract
Adaptive discretization methods and efficient parallel solvers for the nonlinear Stokes
systems arising in global mantle flow are presented. The nonlinear Stokes equations
are discretized using high-order elements that are discontinuous for the pressure. Local
mesh refinement enables resolution of localized features while keeping the size of the re-
sulting algebraic systems amenable for solution on contemporary supercomputers. The
efficiency of the solvers is tested with numerical experiments on model problems and
convergence results are reported. Our goal is the development of fast numerical meth-
ods for combined mantle convection and plate tectonics simulations that would enable to
tackle inverse problems.

1. Mantle convection
Mantle convection is the thermal convection in the Earth’s upper ⇠ 3000 km, it controls
the thermal and geological evolution of the Earth and drives plate motion and mountain
building. The mantle flow is driven by the hot core.

Model equations
Rock in mantle moves like viscous, incompressible fluid
on time scales of millions of years. From conservation of
mass and momentum we obtain the simplified nonlinear
Stokes system:

�r ·
h
µ(T, u)(ru + ru>)

i
+ rp = Ra Ter (S1)

r · u = 0 (S2)

• T . . . temperature
• u . . . velocity
• p . . . pressure
• µ(T, u) . . . viscosity
• Ra ⇠ 106 � 109 . . . Rayleigh

number
• er . . . radial direction

The nonlinear viscosity can be described by the simplified rheology law:

µ(T, u) = µ(T ) µ(u) = eEa(0.5�T ) C
⇣
✏̇II(u)

⌘n�1
n

, (R)

where ✏̇II is the second invariant of the strain rate tensor.

Challenges of forward & inverse solve

⌅ Variation of viscosity µ by 3 to 7 orders of
magnitude.

⌅ Highly localized features w.r.t. Earth radius
⇠ 6371 km: plate thickness ⇠ 50 km and shear-
ing zones at plate boundaries ⇠ 5 . . . 10 km.
Desired resolution of ⇠ 1 km would result
in O(1012) degrees of freedom on an uniform
mesh of Earth’s mantle.

⌅ Toward solving inverse problems: fast forward
solvers are required, so inversion becomes fea-
sible. Parameters to invert for are, e.g., the
rheology and in particular the stress exponent
n and the prefactor C in equation (R), or the
strength of the plate coupling. (Visualization by L. Alisic)

2. High-order finite element discretization

The high-order basis functions on hexahedral elements, which we use, have the properties:
⌅ High-order velocity-pressure pairings in (Qp)

3 ⇥ Qdisc
p�2 or (Qp)

3 ⇥ Pdisc
p�1, which satisfy inf-

sup conditions for non-conforming meshes.
⌅ Algebraic constraints on element faces with hanging nodes enforce continuity of the

global basis functions.
⌅ Hexahedral elements allow for the basis functions to be calculated efficiently by tensor

products.
⌅ Fast, matrix-free application of stiffness and mass matrices.

Parallel octree-based adaptive meshes with p4est library
⌅ Hexahedral meshes with non-conforming, 2 : 1 balanced elements.
⌅ Octree-based mesh topology.
⌅ Parallel adaptive mesh refinement and coarsening.
⌅ Scalable up to hundreds of thousands of processors.

3. Nonlinear variable viscosity Stokes solver

Nonlinear solver: Inexact Newton-Krylov iterative method
Given an approximate solution (u, p), the Newton update (ũ, p̃) for the Stokes system (S1)–
(S2) solves the weak form of the PDE

�r ·
h
µ0(T, u)(rũ + rũ>)

i
+ rp̃ = Ra Ter ,

r · ũ = 0 ,

where µ0(T, u) is an anisotropic 4th-order tensor given by

µ0(T, u) = Cµ(T )µ(u)

 
I � n � 1

n

(ru + ru>) ⌦ (ru + ru>)

✏̇II + ✏

!
.

⌅ Newton update computed inexactly via Krylov subspace iterative method.
⌅ Krylov tolerance decreases with subsequent Newton steps to guarantee superlinear

convergence.
⌅ Line search in direction (ũ, p̃) is conducted using the weak Wolf conditions to maintain

reduction of residuals.

Upper-triangular Elman-Wathen (BFBT) preconditioner for the pres-
sure Schur complement
TODO: write this

Parallel, hybrid geometric-algebraic multigrid for the viscous block
⌅ GMG-AMG approach matches our two-

tier geometric decomposition of the do-
main.

⌅ Smoothed aggregation algebraic multi-
grid (trilinos ML).

⌅ AMG is used for small problem sizes on
small process counts.
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Scalability results for 3D Poisson problem on spherical domain with isotropic spacially vary-
ing coefficient:

Strong scaling

512 1024 2K 4K 8K 16K 32K 64K 131K

10

20

30

40

50

cores!

tim
e(

se
c)
!

AMG strong scaling
GMG strong scaling

Weak scaling

8 64 512 4096 32K 262K
0

10

20

30

40

50

60

70

cores!

tim
e(

se
c)
!

Smoother Transfer
Setup Coarse
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124M elements, 5 GMG levels, AMG for coarse solve, 1 MPI process per core, Jaguar XK6.

4. Convergence of linear & nonlinear solvers

On a rectangular slice domain we consider two problem setups. Prior to invoking a solver,
the meshes were adaptively refined with respect to the viscosity variation.

Convergence for single plate problem, plate thickness ⇠ 130 km
Linear solver: Convergence results for finite element orders N = 2, 4, 6, and viscosity vari-
ation per element �µe  10 (solid lines) and �µe  100 (dashed lines). Different figures
represent different global viscosity variations �µ ⇠ 103, 105, 107.
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Convergence tests of linear solver on brick domain, E=7, ∆µ=1.1e+03

brick_coldplate_visc1_viscE7_lin_schurDiag_sor_gmres (2013−02−14)
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Convergence tests of linear solver on brick domain, E=12, ∆µ=1.6e+05

brick_coldplate_visc1_viscE12_lin_schurDiag_sor_gmres (2013−02−14)
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Convergence tests of linear solver on brick domain, E=17, ∆µ=2.4e+07

brick_coldplate_visc1_viscE17_lin_schurDiag_sor_gmres (2013−02−14)
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Nonlinear solver: Con-
vergence results with initial
�µe  10. Global viscos-
ity variations of solution are
�µ ⇠ 104 (left) and �µ ⇠
106 (right).
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Convergence tests of nonlinear solver on brick domain, E=5, ∆µ=3.8e+04

brick_coldplate_visc3_viscE5_nl_schurDiag_sor_gmres (2013−02−16)

Newton iteration (number of Krylov iterations labeled)
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Convergence tests of nonlinear solver on brick domain, E=7, ∆µ=1.9e+06

brick_coldplate_visc3_viscE7_nl_schurDiag_sor_gmres (2013−02−13..16)

Newton iteration (number of Krylov iterations labeled)
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Convergence for slabs problem with subducting & overriding plate

Linear solver: Conver-
gence results for order
N = 1 functions with mini-
mal weak zone factor 10�3

leading to global viscosity
variations �µ ⇠ 105 (left)
and �µ ⇠ 105 (right). 0 50 100 150 200 250 300

10
−8

10
−6

10
−4

10
−2

10
0

Convergence tests of linear solver on brick domain, E=5, ∆µ=1.5e+05

brick_2plates_visc1_viscE5_lin_schurDiag_sor_gmres (2013−02−15)
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Convergence tests of linear solver on brick domain, E=7, ∆µ=1.1e+06

brick_2plates_visc1_viscE7_lin_schurDiag_sor_gmres (2013−02−15)
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Nonlinear solver: Convergence result with minimal weak zone factor 10�3 (left), viscosity
of solution with global variation �µ ⇠ 107 (middle), and velocity field of solution (right).
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Convergence tests of nonlinear solver on brick domain, E=4, ∆µ=4.2e+07

brick_2plates_visc3_viscE4_nl_schurDiag_sor_gmres (2013−02−15)

Newton iteration (number of Krylov iterations labeled)
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TODO: replace stretched plots by properly scaled ones
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Abstract
Adaptive discretization methods and efficient parallel solvers for the nonlinear Stokes
systems arising in global mantle flow are presented. The nonlinear Stokes equations
are discretized using high-order elements that are discontinuous for the pressure. Local
mesh refinement enables resolution of localized features while keeping the size of the re-
sulting algebraic systems amenable for solution on contemporary supercomputers. The
efficiency of the solvers is tested with numerical experiments on model problems and
convergence results are reported. Our goal is the development of fast numerical meth-
ods for combined mantle convection and plate tectonics simulations that would enable to
tackle inverse problems.

1. Mantle convection
Mantle convection is the thermal convection in the Earth’s upper ⇠ 3000 km, it controls
the thermal and geological evolution of the Earth and drives plate motion and mountain
building. The mantle flow is driven by the hot core.

Model equations
Rock in mantle moves like viscous, incompressible fluid
on time scales of millions of years. From conservation of
mass and momentum we obtain the simplified nonlinear
Stokes system:

�r ·
h
µ(T, u)(ru + ru>)

i
+ rp = Ra Ter (S1)

r · u = 0 (S2)

• T . . . temperature
• u . . . velocity
• p . . . pressure
• µ(T, u) . . . viscosity
• Ra ⇠ 106 � 109 . . . Rayleigh

number
• er . . . radial direction

The nonlinear viscosity can be described by the simplified rheology law:

µ(T, u) = µ(T ) µ(u) = eEa(0.5�T ) C
⇣
✏̇II(u)

⌘n�1
n

, (R)

where ✏̇II is the second invariant of the strain rate tensor.

Challenges of forward & inverse solve

⌅ Variation of viscosity µ by 3 to 7 orders of
magnitude.

⌅ Highly localized features w.r.t. Earth radius
⇠ 6371 km: plate thickness ⇠ 50 km and shear-
ing zones at plate boundaries ⇠ 5 . . . 10 km.
Desired resolution of ⇠ 1 km would result
in O(1012) degrees of freedom on an uniform
mesh of Earth’s mantle.

⌅ Toward solving inverse problems: fast forward
solvers are required, so inversion becomes fea-
sible. Parameters to invert for are, e.g., the
rheology and in particular the stress exponent
n and the prefactor C in equation (R), or the
strength of the plate coupling. (Visualization by L. Alisic)

2. High-order finite element discretization

The high-order basis functions on hexahedral elements, which we use, have the properties:
⌅ High-order velocity-pressure pairings in (Qp)

3 ⇥ Qdisc
p�2 or (Qp)

3 ⇥ Pdisc
p�1, which satisfy inf-

sup conditions for non-conforming meshes.
⌅ Algebraic constraints on element faces with hanging nodes enforce continuity of the

global basis functions.
⌅ Hexahedral elements allow for the basis functions to be calculated efficiently by tensor

products.
⌅ Fast, matrix-free application of stiffness and mass matrices.

Parallel octree-based adaptive meshes with p4est library
⌅ Hexahedral meshes with non-conforming, 2 : 1 balanced elements.
⌅ Octree-based mesh topology.
⌅ Parallel adaptive mesh refinement and coarsening.
⌅ Scalable up to hundreds of thousands of processors.

3. Nonlinear variable viscosity Stokes solver

Nonlinear solver: Inexact Newton-Krylov iterative method
Given an approximate solution (u, p), the Newton update (ũ, p̃) for the Stokes system (S1)–
(S2) solves the weak form of the PDE

�r ·
h
µ0(T, u)(rũ + rũ>)

i
+ rp̃ = Ra Ter ,

r · ũ = 0 ,

where µ0(T, u) is an anisotropic 4th-order tensor given by

µ0(T, u) = Cµ(T )µ(u)

 
I � n � 1

n

(ru + ru>) ⌦ (ru + ru>)

✏̇II + ✏

!
.

⌅ Newton update computed inexactly via Krylov subspace iterative method.
⌅ Krylov tolerance decreases with subsequent Newton steps to guarantee superlinear

convergence.
⌅ Line search in direction (ũ, p̃) is conducted using the weak Wolf conditions to maintain

reduction of residuals.

Upper-triangular Elman-Wathen (BFBT) preconditioner for the pres-
sure Schur complement
TODO: write this

Parallel, hybrid geometric-algebraic multigrid for the viscous block
⌅ GMG-AMG approach matches our two-

tier geometric decomposition of the do-
main.

⌅ Smoothed aggregation algebraic multi-
grid (trilinos ML).

⌅ AMG is used for small problem sizes on
small process counts.
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Scalability results for 3D Poisson problem on spherical domain with isotropic spacially vary-
ing coefficient:

Strong scaling

512 1024 2K 4K 8K 16K 32K 64K 131K

10

20

30

40

50

cores!

tim
e(

se
c)
!

AMG strong scaling
GMG strong scaling

Weak scaling

8 64 512 4096 32K 262K
0

10

20

30

40

50

60

70

cores!

tim
e(

se
c)
!

Smoother Transfer
Setup Coarse

3 levels 4 levels 5 levels 6 levels 7 levels 8 levels

100% 97% 90% 76% 65% 55%

124M elements, 5 GMG levels, AMG for coarse solve, 1 MPI process per core, Jaguar XK6.

4. Convergence of linear & nonlinear solvers

On a rectangular slice domain we consider two problem setups. Prior to invoking a solver,
the meshes were adaptively refined with respect to the viscosity variation.

Convergence for single plate problem, plate thickness ⇠ 130 km
Linear solver: Convergence results for finite element orders N = 2, 4, 6, and viscosity vari-
ation per element �µe  10 (solid lines) and �µe  100 (dashed lines). Different figures
represent different global viscosity variations �µ ⇠ 103, 105, 107.
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Convergence tests of linear solver on brick domain, E=7, ∆µ=1.1e+03

brick_coldplate_visc1_viscE7_lin_schurDiag_sor_gmres (2013−02−14)
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Convergence tests of linear solver on brick domain, E=12, ∆µ=1.6e+05
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Nonlinear solver: Con-
vergence results with initial
�µe  10. Global viscos-
ity variations of solution are
�µ ⇠ 104 (left) and �µ ⇠
106 (right).
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Newton iteration (number of Krylov iterations labeled)
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Newton iteration (number of Krylov iterations labeled)
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Convergence for slabs problem with subducting & overriding plate

Linear solver: Conver-
gence results for order
N = 1 functions with mini-
mal weak zone factor 10�3

leading to global viscosity
variations �µ ⇠ 105 (left)
and �µ ⇠ 105 (right). 0 50 100 150 200 250 300
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Nonlinear solver: Convergence result with minimal weak zone factor 10�3 (left), viscosity
of solution with global variation �µ ⇠ 107 (middle), and velocity field of solution (right).
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Newton iteration (number of Krylov iterations labeled)
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TODO: replace stretched plots by properly scaled ones
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124M elements, 5 GMG levels, AMG for coarse solve, 1 MPI process per core, Jaguar XK6.

4. Linear and nonlinear convergence

We consider two test problems on a rectangular domain. Prior to invoking the solver, the
meshes were adaptively refined to resolve the variations in viscosity. The element pair-
ing (QN )3 × Pdisc

N−1 is used for all tests. Further, we define the global viscosity variation
∆µ = max(µ)/min(µ) and the viscosity variation per element ∆µe = max(µe)/min(µe).

Convergence for single plate problem, plate thickness ∼130 km
Linear solver: Convergence results for N = 2, 4, 6, and viscosity variation per element
∆µe ≤ 10 (solid lines) and ∆µe ≤ 100 (dashed lines). Different figures represent different
global viscosity variations ∆µ ∼ 103, 105, 107. Note that the convergence behavior is rather
independent of the polynomial order and that the convergence is poor for the larger ∆µe.
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Nonlinear solver: Con-
vergence results with initial
∆µe ≤ 10. Global viscos-
ity variations of solution are
∆µ ∼ 104 (left) and ∆µ ∼
106 (right).
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Convergence tests of nonlinear solver on brick domain, E=5, ∆µ=3.8e+04
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Newton iteration (number of Krylov iterations labeled)
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Newton iteration (number of Krylov iterations labeled)
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Convergence for slabs problem with subducting & overriding plate

The extraction from the mesh (above) shows the initial adaptive refinement to resolve the
variations in the viscosity. The shearing zone between the plate boundaries of subduct-
ing plate and overriding plate is modeled by reducing the viscosity by several orders of
magnitude.

Linear solver: Convergence
for N = 2; the viscosity in
the plate boundary (narrow
red zone) is reduced by mul-
tiplication with 10−3, leading
to global viscosity variations
∆µ ∼ 105 (left) and ∆µ ∼ 106

(right).
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e
=1.5e+02
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N=2, maxlevel=8, minweak=10
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, ∆µ
e
=1.1e+03

Nonlinear solver: Convergence (left), effective viscosity at solution with global variation
∆µ ∼ 107 (middle), and velocity field at solution (right).
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Newton iteration (number of Krylov iterations labeled)
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